Effect of a Plant-derived Natural Compound, Flavin7, on the ERK Signaling Pathway in Immortalized Mouse Proximal Tubule Cells

forrás: http://medpublics.com/docs/egy_novenyi_eredetu_vegyulet_english.pdf


2021-02-08 12:45:05


Abstract. Background: Since MAP kinases represent an important pathway of transducing external stimuli to internal signals in cells, determining their possible role in cancer cells may offer a promising way for the treatment and prognosis of malignant diseases. Our previous experiments have shown that a flavonoid-rich solution, Flavin7, was able to diminish kidney tumor growth in vivo. Materials and Methods: Effects of Flavin7 on the MAPK signaling pathway were determined in immortalized mouse proximal tubule cells by determining cell viability, flow cytometric analysis, luciferase assays and Western blots. Results: At a nontoxic dose, Flavin7 markedly reduced phosphorylation of ERK and inhibited activity of its downstream targets such as Elk1 and CREB via inhibition of the ERK-kinase MEK1. Conclusion: Because of its ability to temporarily inhibit kidney tumor growth and activation of the MEK1/ERK pathway in vitro, further in vivo investigations may determine the potential role of Flavin7 in the treatment of malignancies. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. Many steps of this cascade are conserved, and homologs have been discovered in different species (1). The first three mammalian MAP kinases, ERK1, ERK2 and ERK3 were cloned in the early 1990s, facilitating the development of reagents for their study. It has become clear that ERK1 and ERK2 are among the protein kinases most commonly activated in signal transduction pathways. They have particularly been linked to cell proliferation, but have important roles in many other events (2-4). In mammalian cells, ERK1 and ERK2, often referred to as p44 and p42 MAP kinases, are the archetypal members of the MAPK family. Therefore, determining the possible role of MAPKs in cancer cells may offer a promising way for treatment and prognosis of cancerous diseases. According to recent results, activation of the ERK pathway is a frequent event in tumorigenesis. ERK has been implicated in cell initiation, tumor promotion and progression, invasion, metastasis, and regulation of apoptosis and angiogenesis, events that are essential for successful completion of developing a metastatic tumor (reviewed in 5). On the other hand, ERK activation is not unambiguously an advantage or a disadvantage for patients with cancerous diseases, since it has been shown to trigger cell proliferation and survival in normal cells, as well as in tumor cells. Flavonoids, found in great quantity in fruit extracts, are secondary metabolites of superior plants exhibiting antitumor effects. They are known to exert antioxidant and antiproliferative effects on tumor cells (6). Recent studies have speculated that the classical antioxidant activity of flavonoids is unlikely to be the sole explanation for their cellular effects. This hypothesis is based on several lines of reasoning: i) flavonoids are extensively metabolized in vivo, thus, their redox potentials are significantly altered (7), and ii) the concentrations of flavonoids and their metabolites accumulated in vivo are lower than those of small of antioxidant nutrients (8). Investigations have indicated that flavonoids may selectively interact with the MAPK signaling pathway due to their ability to inhibit tyrosine kinase activity (9, 10). A natural compound, Flavin7 (F7), composed of the extracts from seven different fruits, was investigated in our kidney tumor animal model (11). Ne/De tumor cells were transplanted underneath the renal capsule of 6- to 8-weekold Fisher344 rats and animals were treated with human 871 Correspondence to: Edit Nádasi, MD, Ph.D., Department of Public Health and Preventive Medicine, University of Pécs, 7624 Pécs, Szigeti u. 12, Hungary. Tel: +36 72 536394, Fax: +36 72 536395, e-mail: edit.nadasi@aok.pte.hu Key Words: Flavin7 extract, plant-derived natural compounds, mitogen-activated protein kinase pathway, anticarcinogenic effect. in vivo 21: 871-876 (2007) Effect of a Plant-derived Natural Compound, Flavin7, on the ERK Signaling Pathway in Immortalized Mouse Proximal Tubule Cells EDIT NÁDASI1,2, ISTVÁN EMBER2 and ISTVÁN ARANY1 1Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veteran HealthCare System, Little Rock, AR 72205, U.S.A.; 2Department of Public Health and Preventive Medicine, University of Pécs, 7624 Pécs, Hungary 0258-851X/2007 $2.00+.40 dose-equivalent F7 solution according to the manufacturer’s instructions. After two weeks of treatment rats were sacrificed and tumor growth was determined. F7 significantly (p<0.05) reduced tumor growth in vivo. Accordingly, the aim of this study was to determine whether F7 influences the ERK signaling pathway in immortalized mouse renal proximal tubule cells.

 


Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture

forrás: https://pubmed.ncbi.nlm.nih.gov/21079686/


2021-01-22 12:16:26


Increasing the intracellular Zn(2+) concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn(2+) and PT at low concentrations (2 µM Zn(2+) and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV--thus eliminating the need for PT to transport Zn(2+) across the plasma membrane--we show that Zn(2+) efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn(2+) directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn(2+) was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn(2+) with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.

 


Zinc Ionophore Activity of Quercetin and Epigallocatechin-gallate: From Hepa 1-6 Cells to a Liposome Model

forrás: https://surfaceyourrealself.com/2020/07/12/take-responsibility-for-your-one-precious-life-zinc/


2021-01-22 12:00:24


This 2020 review highlighted earlier clinical data on zinc:

  • “Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response.
  • Zinc possesses anti-inflammatory activity by inhibiting NF-κB signaling and modulation of regulatory T-cell functions.
  • The most critical role of zinc is demonstrated for the immune system.
  • Zinc regulates proliferation, differentiation, maturation, and functioning of leukocytes and lymphocytes.

Alteration of zinc status significantly affects immune response resulting in increased susceptibility to inflammatory and infectious diseases including acquired immune deficiency syndrome, measles, malaria, tuberculosis, and pneumonia. Zinc status is associated with the prevalence of respiratory tract infections in children and adults.

In view of the high prevalence of zinc deficiency worldwide (up to 17%), its impact on population health is considered as a significant issue. Certain groups of people, including infants, especially preterm ones, and elderly, are considered to be at high risk of zinc deficiency and its adverse effects.

Zinc was shown to have a significant impact on viral infections through modulation of viral particle entry, fusion, replication, viral protein translation and further release for a number of viruses including those involved in respiratory system pathology. Increasing intracellular Zn levels through application of Zn ionophores significantly alters replication of picornavirus, the leading cause of common cold.

The results of systematic analysis confirmed the efficiency of intake of at least 75 mg/day Zn in reduction of pneumonia symptom duration but not severity, with the response being more pronounced in adults than in children.”

 


Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target

forrás: https://pubmed.ncbi.nlm.nih.gov/32125455/


2021-01-22 11:19:04


Josef Penninger is the founder and a shareholder of Apeiron, the company that makes rhACE2. Arthur Slutsky has been a paid consultant for Apeiron. No other conflicts of interested have been reported.

 


Targeted Oxidation Strategy (TOS) for Potential Inhibition of Coronaviruses by Disulfiram — a 70-Year Old Anti-Alcoholism Drug

forrás: https://app.dimensions.ai/details/publication/pub.1125450507


2021-01-22 10:57:07


In the new millennium, the outbreak of new coronavirus has happened three times: SARS-CoV, MERS-CoV, and 2019-nCoV. Unfortunately, we still have no pharmaceutical weapons against the diseases caused by these viruses. The pandemic of 2019-nCoV reminds us of the urgency to search new drugs with totally different mechanism that may target the weaknesses specific to coronaviruses. Herein, we disclose a new targeted oxidation strategy (TOS II) leveraging non-covalent interactions potentially to oxidize and inhibit the activities of cytosolic thiol proteins via thiol/thiolate oxidation to disulfide (TOD). Quantum mechanical calculations show encouraging results supporting the feasibility to selectively oxidize thiol of targeted proteins via TOS II even in relatively reducing cytosolic microenvironments. Molecular docking against the two thiol proteases Mpro and PLpro of 2019-nCoV provide evidence to support a TOS II mechanism for two experimentally identified anti-2019-nCoV disulfide oxidants: disulfiram and PX-12. Remarkably, disulfiram is an anti-alcoholism drug approved by FDA 70 years ago, thus it can be immediately used in phase III clinical trial for anti-2019-nCoV treatment. Finally, a preliminary list of promising TOS II drug candidates targeting the two thiol proteases of 2019-nCoV are proposed upon virtual screening of 32143 disulfides

 


QR-CODE

Download image: Right click, "Image save as..."