Chemoprevention of intestinal tumorigenesis by the natural dietary flavonoid myricetin in APCMin/+ mice

forrás: https://www.oncotarget.com/article/11108/text/


2021-11-19 11:49:59


Myricetin is a natural dietary flavonoid compound. We evaluated the efficacy of myricetin against intestinal tumorigenesis in adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mice. Myricetin was given orally once a day for 12 consecutive weeks. APCMin/+ mice fed with myricetin developed fewer and smaller polyps without any adverse effects. Histopathological analysis showed a decreased number of dysplastic cells and degree of dysplasia in each polyp. Immunohistochemical and western blot analysis revealed that myricetin selectively inhibits cell proliferation and induces apoptosis in adenomatous polyps. The effects of myricetin were associated with a modulation the GSK-3β and Wnt/β-catenin pathways. ELISA analysis showed a reduced concentration of pro-inflammatory cytokines IL-6 and PGE2 in blood, which were elevated in APCMin/+ mice. The effect of myricetin treatment was more prominent in the adenomatous polyps originating in the colon. Further studies showed that myricetin downregulates the phosphorylated p38 MAPK/Akt/mTOR signaling pathways, which may be the mechanisms for the inhibition of adenomatous polyps by myricetin. Taken together, our data show that myricetin inhibits intestinal tumorigenesis through a collection of biological activities. Given these results, we suggest that myricetin could be used preventatively to reduce the risk of developing colon cancers.


Retinal and Renal Vascular Permeability Changes Caused by Stem Cell Stimulation in Alloxan-induced Diabetic Rats, Measured by Extravasation of Fluorescein

forrás: http://medpublics.com/docs/OlimpiqSXC_Retinal.pdf


2021-06-23 10:37:34


Aim: To determine whether treatment with the stem cell stimulator Olimpiq® Stem×Cell prevents increase of retinal and renal vascular permeability in alloxan-induced diabetic rats. Materials and Methods: Two groups of Wistar rats were made diabetic by single intraperitoneal injection of Alloxan. The third, the control group, received vehicle alone. One diabetic group received Olimpiq® Stem×Cell treatment for 4 weeks. The permeability of the blood–retinal barrier (BRB) and renal vessels were measured by the extravasation of fluorescein–labeled bovine serum albumin. Results: Six weeks subsequently to Alloxan injection, significantly elevated the tissue fluorescence, the renal vascular leakage and BRB breakdown was demonstrated in the diabetic group, compared to the nondiabetic group. Olimpiq® Stem×Cell treatment significantly reduced the BRB breakdown, tissue fluorescence, and vascular leakage. Conclusion: Olimpiq® Stem×Cell would be a useful choice of treatment for complications associated with increased vascular permeability of diabetes, such as retinopathy or nephropathy.