Coenzyme Q10 and Immune Function: An Overview


2021-10-20 14:01:44

Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response. In view of the differing roles CoQ10 plays in the immune system, together with the reported ability of CoQ10 supplementation to improve the functioning of this system, the aim of this article is to review the current literature available on both the role of CoQ10 in human immune function and the effect of CoQ10 supplementation on this system.

Coenzyme Q10 levels are low and associated with increased mortality in post-cardiac arrest patients.


2015-02-17 16:43:45

AIM:Survival after cardiac arrest (CA) is limited by the profound neurologic insult from ischemia-reperfusion injury. Therapeutic options are limited. Previous data suggest a benefit of coenzyme Q(10) (CoQ(10)) in post-arrest patients. We hypothesized that plasma CoQ(10) levels would be low after CA and associated with poorer outcomes.

METHODS: Prospective observational study of post-arrest patients presenting to a tertiary care center. CoQ(10) levels were drawn 24h after return of spontaneous circulation (ROSC) and compared to healthy controls. Levels of inflammatory cytokines and biomarkers were analyzed. Primary endpoints were survival to discharge and neurologic status at time of discharge.

RESULTS:23 CA subjects and 16 healthy controls were enrolled. CoQ(10) levels in CA patients (0.28 μmol L(-1), inter-quartile range (IQR): 0.22-0.39) were significantly lower than in controls (0.75 μmol L(-1), IQR: 0.61-1.08, p<0.0001). The mean CoQ(10) level in CA patients who died was significantly lower than in those who survived (0.27 vs 0.47 μmol L(-1), p = 0.007). There was a significant difference in median CoQ(10) level between patients with a good vs poor neurological outcome (0.49 μmol L(-1), IQR: 0.30-0.67 vs 0.27 μmol L(-1), IQR: 0.21-0.30, p = 0.02). CoQ(10) was a statistically significant predictor of poor neurologic outcome (adjusted p = 0.02) and in-hospital mortality (adjusted p = 0.026).

CONCLUSION:CoQ(10) levels are low in human subjects with ROSC after cardiac arrest as compared to healthy controls. CoQ(10) levels were lower in those who died, as well as in those with a poor neurologic outcome.

Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia.


2015-02-17 16:34:43

Myocardial ischemia (MI) remains one of the leading causes of death worldwide. Angiogenic therapy with the vascular endothelial growth factor (VEGF) is a promising strategy to overcome hypoxia and its consequences. However, from the clinical data it is clear that fulfillment of the potential of VEGF warrants a better delivery strategy. On the other hand, the compelling evidences of the role of oxidative stress in diseases like MI encourage the use of antioxidant agents. Coenzyme Q10 (CoQ10) due to its role in the electron transport chain in the mitochondria seems to be a good candidate to manage MI but is associated with poor biopharmaceutical properties seeking better delivery approaches. The female Sprague Dawley rats were induced MI and were followed up with VEGF microparticles intramyocardially and CoQ10 nanoparticles orally or their combination with appropriate controls. Cardiac function was assessed by measuring ejection fraction before and after three months of therapy. Results demonstrate significant improvement in the ejection fraction after three months with both treatment forms individually; however the combination therapy failed to offer any synergism. In conclusion, VEGF microparticles and CoQ10 nanoparticles can be considered as promising strategies for managing MI.

Myocardial protection during elective coronary artery bypasses grafting by pretreatment with omega-3 polyunsaturated fatty acids.


2015-02-17 15:00:17


Despite recent advances in coronary artery bypass grafting (CABG), cardioplegic cardiac arrest and cardiopulmonary bypass (CPB) are still associated with myocardial injury. Accordingly, the efforts have been made lately to improve the outcome of CPB by glucose-insulin-potassium, adenosine, Ca(2+)-channel antagonists, L-arginine, N-acetylcysteine, coenzyme Q10, diazoxide, Na+/H+ exchange inhibitors, but with an unequal results. Since omega-3 polyunsatutated fatty acids (PUFAs) have shown remarkable cardioprotection in preclinical researches, the aim of our study was to check their effects in prevention of ischemia reperfusion injury in patients with CPB.


This prospective, randomized, placebo-controlled study was performed with parallel groups. The patients undergoing elective CABG were randomized to receive preoperative intravenous omega-3 PUFAs infusion (n = 20) or the same volume of 0.9% saline solution infusion (n = 20). Blood samples were collected simultaneously from the radial artery and the coronary sinus before starting CPB and at 10, 20 and 30 min after the release of the aortic cross clamp. Lactate extraction/excretion and myocardial oxygen extraction were calculated and compared between the two groups. The levels of troponin I (TnT) and creatine kinase-myocardial band (CK-MB) were determined before starting CPB and 4 and 24 h postoperatively.


Demographic and operative characteristics, including CPB and aortic cross-clamp time, were similar between the two groups of patients. The level of lactate extraction 10 and 20 min after aortic cross-clamp time has shown negative values in the control group, but positive values in the PUFAs group with statistically significant differences (-19.6% vs 7.9%; p < 0.0001 and -19.9% vs 8.2%; p < 0.0008, respectively). The level of lactate extraction 30 minutes after reperfusion was not statistically different between the two groups (6.9% vs 4.2%; p < 0.54). Oxygen extraction in the PUFAs group was statistically significantly higher compared to the control group after 10, 20 and 30 min of reperfusion (35.5% vs 50.4%, p < 0.0004; 25.8 % vs 48.7%, p < 0.0001 and 25.8% vs 45.6%, p < 0.0002, respectively). The level of TnT, 4 and 24 h after CPB, was significantly higher in the control group compared to PUFAs group, with statistically significant differences (11.4 vs 6.6, p < 0.009 and 12.7 vs 5.9, p < 0.008, respectively). The level of CK-MB, 4 h after CPB, was significantly higher in the control group compared to PUFAs group (61.9 vs 37.7, p < 0.008), but its level, 24 h after CPB, was not statistically different between the two groups (58.9 vs 40.6, p < 0.051).


Treatment with omega-3 PUFAs administered preoperatively promoted early metabolic recovery of the heart after elective CABG and improved myocardial protection. This study showed that omega-3 emulsion should not be considered only as a nutritional supplement but also as a clinically safe and potent cardioprotective adjunct during CPB.

A koenzim Q10 és az immunműködés: áttekintés


2021-10-20 14:01:44

A koenzim Q10-nek (CoQ10) számos olyan fontos szerepe van a sejtben, amely szükséges az immunrendszer optimális működéséhez. Ezek közé tartozik az az alapvető feladat, amelyet elektronhordozóként tölt be a mitokondriális légzési láncban, amely lehetővé teszi az oxidatív foszforiláció folyamatát és az ezzel egyidejű ATP termelést, valamint a potenciális zsíroldékony antioxidánsként betöltött szerepe, amellyel megvédi a sejtet a szabadgyök által előidézett oxidációval szemben. A CoQ10-vel kapcsolatban arról is beszámoltak, hogy gyulladásgátló szerepe van, mert képes elnyomni a gyulladáskeltő génkifejeződést. Nemrégiben a CoQ10-ről azt is közölték, hogy fontos feladatot lát el a lizoszómán belül, ami egy olyan organellum, amely központi fontosságú az immunválaszhoz. Tekintettel a CoQ10- nek az immunrendszerben betöltött különböző szerepeire, valamint a CoQ10 pótlásnak az immunrendszer működését javító képességéről szóló jelentésekre, e cikk célja, hogy áttekintse a CoQ10-nek az emberi immunrendszer működésében betöltött szerepéről és a CoQ10 pótlásank az erre a rendszerre gyakorolt hatásáról jelenleg rendelkezésre álló szakirodalmat.


Download image: Right click, "Image save as..."