Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture

forrás: https://pubmed.ncbi.nlm.nih.gov/21079686/

2021-01-22 12:16:26

Increasing the intracellular Zn(2+) concentration with zinc-ionophores like pyrithione (PT) can efficiently impair the replication of a variety of RNA viruses, including poliovirus and influenza virus. For some viruses this effect has been attributed to interference with viral polyprotein processing. In this study we demonstrate that the combination of Zn(2+) and PT at low concentrations (2 µM Zn(2+) and 2 µM PT) inhibits the replication of SARS-coronavirus (SARS-CoV) and equine arteritis virus (EAV) in cell culture. The RNA synthesis of these two distantly related nidoviruses is catalyzed by an RNA-dependent RNA polymerase (RdRp), which is the core enzyme of their multiprotein replication and transcription complex (RTC). Using an activity assay for RTCs isolated from cells infected with SARS-CoV or EAV--thus eliminating the need for PT to transport Zn(2+) across the plasma membrane--we show that Zn(2+) efficiently inhibits the RNA-synthesizing activity of the RTCs of both viruses. Enzymatic studies using recombinant RdRps (SARS-CoV nsp12 and EAV nsp9) purified from E. coli subsequently revealed that Zn(2+) directly inhibited the in vitro activity of both nidovirus polymerases. More specifically, Zn(2+) was found to block the initiation step of EAV RNA synthesis, whereas in the case of the SARS-CoV RdRp elongation was inhibited and template binding reduced. By chelating Zn(2+) with MgEDTA, the inhibitory effect of the divalent cation could be reversed, which provides a novel experimental tool for in vitro studies of the molecular details of nidovirus replication and transcription.


Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target

forrás: https://pubmed.ncbi.nlm.nih.gov/32125455/

2021-01-22 11:19:04

Josef Penninger is the founder and a shareholder of Apeiron, the company that makes rhACE2. Arthur Slutsky has been a paid consultant for Apeiron. No other conflicts of interested have been reported.


Targeted Oxidation Strategy (TOS) for Potential Inhibition of Coronaviruses by Disulfiram — a 70-Year Old Anti-Alcoholism Drug

forrás: https://app.dimensions.ai/details/publication/pub.1125450507

2021-01-22 10:57:07

In the new millennium, the outbreak of new coronavirus has happened three times: SARS-CoV, MERS-CoV, and 2019-nCoV. Unfortunately, we still have no pharmaceutical weapons against the diseases caused by these viruses. The pandemic of 2019-nCoV reminds us of the urgency to search new drugs with totally different mechanism that may target the weaknesses specific to coronaviruses. Herein, we disclose a new targeted oxidation strategy (TOS II) leveraging non-covalent interactions potentially to oxidize and inhibit the activities of cytosolic thiol proteins via thiol/thiolate oxidation to disulfide (TOD). Quantum mechanical calculations show encouraging results supporting the feasibility to selectively oxidize thiol of targeted proteins via TOS II even in relatively reducing cytosolic microenvironments. Molecular docking against the two thiol proteases Mpro and PLpro of 2019-nCoV provide evidence to support a TOS II mechanism for two experimentally identified anti-2019-nCoV disulfide oxidants: disulfiram and PX-12. Remarkably, disulfiram is an anti-alcoholism drug approved by FDA 70 years ago, thus it can be immediately used in phase III clinical trial for anti-2019-nCoV treatment. Finally, a preliminary list of promising TOS II drug candidates targeting the two thiol proteases of 2019-nCoV are proposed upon virtual screening of 32143 disulfides


Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking

forrás: http://medpublics.com/docs/computational_screening.pdf

2021-01-21 14:14:58

In the current spread of novel coronavirus (SARS-CoV-2), antiviral drug discovery is of great importance. AutoDock Vina was used to screen potential drugs by molecular docking with the structural protein and non-structural protein sites of new coronavirus. Ribavirin, a common antiviral drug, remdesivir, chloroquine and luteolin were studied. Honeysuckle is generally believed to have antiviral effects in traditional Chinese medicine. In this study, luteolin (the main flavonoid in honeysuckle) was found to bind with a high affinity to the same sites of the main protease of SARS-CoV-2 as the control molecule. Chloroquine has been proved clinically effective and can bind to the main protease; this may be the antiviral mechanism of this drug. The study was restricted to molecular docking without validation by molecular dynamics simulations. Interactions with the main protease may play a key role in fighting against viruses. Luteolin is a potential antiviral molecule worthy of attention


Roles of flavonoids against coronavirus infection

forrás: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385538/

2021-01-25 11:09:42

In terms of public health, the 21st century has been characterized by coronavirus pandemics: in 2002-03 the virus SARS-CoV caused SARS; in 2012 MERS-CoV emerged and in 2019 a new human betacoronavirus strain, called SARS-CoV-2, caused the unprecedented COVID-19 outbreak. During the course of the current epidemic, medical challenges to save lives and scientific research aimed to reveal the genetic evolution and the biochemistry of the vital cycle of the new pathogen could lead to new preventive and therapeutic strategies against SARS-CoV-2. Up to now, there is no cure for COVID-19 and waiting for an efficacious vaccine, the development of “savage” protocols, based on “old” anti-inflammatory and anti-viral drugs represents a valid and alternative therapeutic approach. As an alternative or additional therapeutic/preventive option, different in silico and in vitro studies demonstrated that small natural molecules, belonging to polyphenol family, can interfere with various stages of coronavirus entry and replication cycle. Here, we reviewed the capacity of well-known (e.g. quercetin, baicalin, luteolin, hesperetin, gallocatechin gallate, epigallocatechin gallate) and uncommon (e.g. scutellarein, amentoflavone, papyriflavonol A) flavonoids, secondary metabolites widely present in plant tissues with antioxidant and anti-microbial functions, to inhibit key proteins involved in coronavirus infective cycle, such as PLpro, 3CLpro, NTPase/helicase. Due to their pleiotropic activities and lack of systemic toxicity, flavonoids and their derivative may represent target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections.


Download image: Right click, "Image save as..."