Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target

forrás: https://pubmed.ncbi.nlm.nih.gov/32125455/


2021-01-22 11:19:04


Josef Penninger is the founder and a shareholder of Apeiron, the company that makes rhACE2. Arthur Slutsky has been a paid consultant for Apeiron. No other conflicts of interested have been reported.

 


Targeted Oxidation Strategy (TOS) for Potential Inhibition of Coronaviruses by Disulfiram — a 70-Year Old Anti-Alcoholism Drug

forrás: https://app.dimensions.ai/details/publication/pub.1125450507


2021-01-22 10:57:07


In the new millennium, the outbreak of new coronavirus has happened three times: SARS-CoV, MERS-CoV, and 2019-nCoV. Unfortunately, we still have no pharmaceutical weapons against the diseases caused by these viruses. The pandemic of 2019-nCoV reminds us of the urgency to search new drugs with totally different mechanism that may target the weaknesses specific to coronaviruses. Herein, we disclose a new targeted oxidation strategy (TOS II) leveraging non-covalent interactions potentially to oxidize and inhibit the activities of cytosolic thiol proteins via thiol/thiolate oxidation to disulfide (TOD). Quantum mechanical calculations show encouraging results supporting the feasibility to selectively oxidize thiol of targeted proteins via TOS II even in relatively reducing cytosolic microenvironments. Molecular docking against the two thiol proteases Mpro and PLpro of 2019-nCoV provide evidence to support a TOS II mechanism for two experimentally identified anti-2019-nCoV disulfide oxidants: disulfiram and PX-12. Remarkably, disulfiram is an anti-alcoholism drug approved by FDA 70 years ago, thus it can be immediately used in phase III clinical trial for anti-2019-nCoV treatment. Finally, a preliminary list of promising TOS II drug candidates targeting the two thiol proteases of 2019-nCoV are proposed upon virtual screening of 32143 disulfides

 


Zinc and respiratory tract infections: Perspectives for COVID‑19

forrás: https://www.spandidos-publications.com/ijmm/46/1/17


2021-01-22 09:50:43


In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS‑CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin‑converting enzyme 2 (ACE2), known to be the receptor for SARS‑CoV‑2. Improved antiviral immunity by zinc may also occur through up‑regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti‑inflammatory activity by inhibiting NF‑κB signaling and modulation of regulatory T‑cell functions that may limit the cytokine storm in COVID‑19. Improved Zn status may also reduce the risk of bacterial co‑infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.

 


Roles of flavonoids against coronavirus infection

forrás: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385538/


2021-01-25 11:09:42


In terms of public health, the 21st century has been characterized by coronavirus pandemics: in 2002-03 the virus SARS-CoV caused SARS; in 2012 MERS-CoV emerged and in 2019 a new human betacoronavirus strain, called SARS-CoV-2, caused the unprecedented COVID-19 outbreak. During the course of the current epidemic, medical challenges to save lives and scientific research aimed to reveal the genetic evolution and the biochemistry of the vital cycle of the new pathogen could lead to new preventive and therapeutic strategies against SARS-CoV-2. Up to now, there is no cure for COVID-19 and waiting for an efficacious vaccine, the development of “savage” protocols, based on “old” anti-inflammatory and anti-viral drugs represents a valid and alternative therapeutic approach. As an alternative or additional therapeutic/preventive option, different in silico and in vitro studies demonstrated that small natural molecules, belonging to polyphenol family, can interfere with various stages of coronavirus entry and replication cycle. Here, we reviewed the capacity of well-known (e.g. quercetin, baicalin, luteolin, hesperetin, gallocatechin gallate, epigallocatechin gallate) and uncommon (e.g. scutellarein, amentoflavone, papyriflavonol A) flavonoids, secondary metabolites widely present in plant tissues with antioxidant and anti-microbial functions, to inhibit key proteins involved in coronavirus infective cycle, such as PLpro, 3CLpro, NTPase/helicase. Due to their pleiotropic activities and lack of systemic toxicity, flavonoids and their derivative may represent target compounds to be tested in future clinical trials to enrich the drug arsenal against coronavirus infections.


Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human

forrás: http://medpublics.com/docs/tripartite_combination.pdf


2021-01-21 10:16:25


Abstract: Genes required for SARS-CoV-2 entry into human cells, ACE2 and FURIN, were employed as baits to build genomic-guided molecular maps of upstream regulatory elements, their expression and functions in the human body, and pathophysiologically relevant cell types. Repressors and activators of the ACE2 and FURIN genes were identified based on the analyses of gene silencing and overexpression experiments as well as relevant transgenic mouse models. Panels of repressors (VDR; GATA5; SFTPC; HIF1a) and activators (HMGA2; INSIG1; RUNX1; HNF4a; JNK1/c-FOS) were then employed to identify existing drugs manifesting in their effects on gene expression signatures of potential coronavirus infection mitigation agents. Using this strategy, vitamin D and quercetin have been identified as putative 2019 coronavirus disease (COVID-19) mitigation agents. Quercetin has been identified as one of top-scoring candidate therapeutics in the supercomputer SUMMIT drug-docking screen and Gene Set Enrichment Analyses (GSEA) of expression profiling experiments (EPEs), indicating that highly structurally similar quercetin, luteolin, and eriodictyol could serve as scaffolds for the development of efficient inhibitors of SARS-CoV-2 infection. In agreement with this notion, quercetin alters the expression of 98 of 332 (30%) of human genes encoding protein targets of SARS-CoV-2, thus potentially interfering with functions of 23 of 27 (85%) of the SARS-CoV-2 viral proteins in human cells. Similarly, Vitamin D may interfere with functions of 19 of 27 (70%) of the SARS-CoV-2 proteins by altering expression of 84 of 332 (25%) of human genes encoding protein targets of SARS-CoV-2. Considering the potential effects of both quercetin and vitamin D, the inference could be made that functions of 25 of 27 (93%) of SARS-CoV-2 proteins in human cells may be altered. GSEA and EPEs identify multiple drugs, smoking, and many disease conditions that appear to act as putative coronavirus infection-promoting agents. Discordant patterns of testosterone versus estradiol impacts on SARS-CoV-2 targets suggest a plausible molecular explanation of the apparently higher male mortality during the coronavirus pandemic. Estradiol, in contrast with testosterone, affects the expression of the majority of human genes (203 of 332; 61%) encoding SARS-CoV-2 targets, thus potentially interfering with functions of 26 of 27 SARS-CoV-2 viral proteins. A hypothetical tripartite combination consisting of quercetin/vitamin D/estradiol may affect expression of 244 of 332 (73%) human genes encoding SARS-CoV-2 targets. Of major concern is the ACE2 and FURIN expression in many human cells and tissues, including immune cells, suggesting that SARS-CoV-2 may infect a broad range of cellular targets in the human body. Infection of immune cells may cause immunosuppression, long-term persistence of the virus, and spread of the virus to secondary targets. Present analyses and numerous observational studies indicate that age-associated vitamin D deficiency may contribute to the high mortality of older adults and the elderly. Immediate availability for targeted experimental and clinical interrogations of potential COVID-19 pandemic mitigation agents, Biomedicines 2020, 8, 129; doi:10.3390/biomedicines8050129 www.mdpi.com/journal/biomedicines Biomedicines 2020, 8, 129 2 of 26 namely vitamin D and quercetin, as well as of the highly selective (Ki, 600 pm) intrinsically specific FURIN inhibitor (a1-antitrypsin Portland (a1-PDX), is considered an encouraging factor. Observations reported in this contribution are intended to facilitate follow-up targeted experimental studies and, if warranted, randomized clinical trials to identify and validate therapeutically viable interventions to combat the COVID-19 pandemic. Specifically, gene expression profiles of vitamin D and quercetin activities and their established safety records as over-the-counter medicinal substances strongly argue that they may represent viable candidates for further considerations of their potential utility as COVID-19 pandemic mitigation agents. In line with the results of present analyses, a randomized interventional clinical trial evaluating effects of estradiol on severity of the coronavirus infection in COVID19+ and presumptive COVID19+ patients and two interventional randomized clinical trials evaluating effects of vitamin D on prevention and treatment of COVID-19 were listed on the ClinicalTrials.gov website


QR-CODE

Download image: Right click, "Image save as..."